Mathematical Modeling of Anomalous Diffusion in Porous Media

نویسندگان

  • SERGEI FOMIN
  • VLADIMIR CHUGUNOV
  • TOSHIYUKI HASHIDA
چکیده

Analysis of diffusion in a complex environment shows that the conventional diffusion equation based on Fick’s law fails to model the anomalous character of the diffusive mass transport observed in the field and laboratory experiments. New mathematical models of diffusive transport, different from Fick’s law, were proposed and validated in literature. In the present paper the examples of the equations that can be used for describing the anomalous mass transport are presented and some important properties of these equations are discussed. Two regimes of anomalous diffusion are identified. One regime, which is called sub-diffusion, is characterized by the slower propagation of the concentration front, so that the squared distance of the front passage requires longer time than in the case of the classical Fickian diffusion. The second regime (called super-diffusion) is characterized by the higher diffusion rate, so that the particles will pass the specified distance faster than in the case of classical Fickian diffusion. Both regimes can be modeled by non-local diffusion equation with temporal and spatial fractional derivatives. It is shown that equation with spatially variable diffusivity proposed by O’Shaughnessy and Procaccia (1985), which provides a relatively good model of diffusion on a regular fractal, is less applicable for describing the effects of sub and super diffusion that may take place in a fractured porous medium or any other complex medium. Mathematics subject classification (2010): 35R11, 35Q35, 76S05.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lattice Boltzmann modeling of two component gas diffusion in solid oxide fuel cell

In recent years, the need for high efficiency and low emission power generation systems has made much attention to the use of fuel cell technology. The solid oxide fuel cells due to their high operating temperature (800 ℃ -1000 ℃) are suitable for power generation systems.Two-component gas flow (H2 and H2O) in the porous media of solid oxide fuel cell’s anode have been modeled via lattice Boltz...

متن کامل

Mathematical Modeling of Contaminated Soil Bioremediation Bases on Convection Dispersion Phenomena

A mathematical model has been analyzed for in-situ bioremediation with the purpose of remediating organic contaminated soil. Oxygen rich water when passed through the porous media of soil activates the aerobic microorganisms, leading to the biodegradation of the organic content. The model equations comprise three convection-dispersion partial differential solution of these equations has been co...

متن کامل

Mathematical Modeling of Contaminated Soil Bioremediation Bases on Convection Dispersion Phenomena

A mathematical model has been analyzed for in-situ bioremediation with the purpose of remediating organic contaminated soil. Oxygen rich water when passed through the porous media of soil activates the aerobic microorganisms, leading to the biodegradation of the organic content. The model equations comprise three convection-dispersion partial differential solution of these equations has been co...

متن کامل

Diffusion in Deforming Porous Media

We report on some recent progress in the mathematical theory of nonlinear fluid transport and poro-mechanics, specifically, the design, analysis and application of mathematical models for the flow of fluids driven by the coupled pressure and stress distributions within a deforming heterogeneous porous structure. The goal of this work is to develop a set of mathematical models of coupled flow an...

متن کامل

Diffusion in Porous Media

Porous media are of considerable interest in a very diverse range of activities. They comprise a wide variety of substances—plastics, ceramics, cements, clays, rocks, porous glasses, carbons, silica gels, zeolites, the recently emerging metal–organic frameworks and coordination polymers, and many more. Even biological tissues may share many features of porous media. Depending on the given natur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011